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“That’s like saying you’re the most important electron in the hydrogen atom.

‘Cause you see, there’s only one electron in a hydrogen atom.”

—Sheldon Cooper (Big Bang Theory)

4.1 THE HYDROGEN ATOM

The goal of this chapter is to solve the Schrödinger equation for the one electron

in the hydrogen atom. This electron experiences an electrostatic attraction for the

nucleus which is distance dependent and which has a potential energy term given by

Coulomb’s law. The time-independent Schrödinger equation for the hydrogen atom

is given in Equation (4.1), where Z is the atomic number (Z= 1 for H) and e is the

charge on an electron. Because of the spherical symmetry for the potential energy

term, it is more convenient to switch from Cartesian to polar coordinates, as shown

in Figure 4.1. The conversions are given in the figure caption.

− ℏ2

2m

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 𝜕2

𝜕z2

)
− Ze2

4π𝜀0 r
𝜓 = E𝜓 (4.1)

After substituting the polar coordinates for Cartesian coordinates and a very

lengthy application of the chain rule, Equation (4.1) becomes Equation (4.2) in spher-

ical polar coordinates.

− ℏ2

2m

[
1

r2
𝜕

𝜕r

(
r2
𝜕𝜓

𝜕r

)
+ 1

r2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕𝜓

𝜕𝜃

)
+ 1

r2 sin2𝜃

𝜕2𝜓

𝜕𝜙2

]
− Ze2

4π𝜀0 r
𝜓 = E𝜓

(4.2)

This equation can be separated into a radial part and an angular part, such

that the wave function 𝜓 can be taken as the product of a radial function R and

an angular function Y, as shown in Equation (4.3). Multiplication of both sides of

Equation (4.2) by 2mr2, followed by the method of separation of variables yields the

slightly more manageable form of the Schrödinger equation for the hydrogen atom

given in Equation (4.4), where 𝛽 is the separation constant and we have incorporated

ℏ in with 𝛽.

𝜓(r, 𝜃, 𝜙) = R(r)Y(𝜃, 𝜙) (4.3)
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82 4 ATOMIC STRUCTURE

FIGURE 4.1
The point P is expressed in
Cartesian units as P(x, y, z) and
in spherical polar coordinates as
P(r, 𝜃, 𝜙), where x= r sin𝜃 cos𝜙,
y= r sin𝜃 sin𝜙, and z= r cos𝜃. x

y

z

P

r

θ

ϕ

1

R(r)

[
d

dR

(
r2
dR

dr

)
+ 2mr2

ℏ2

(
e2

4π𝜀0 r
+ E

)
R(r)

]
=

−Y(𝜃, 𝜙)
[

1

sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕Y

𝜕𝜃

)
+ 1

sin2𝜃

𝜕2Y

𝜕𝜙2

]
= 𝛽 (4.4)

Neither of the differential equations in Equation (4.4) is particularly easy to

solve. Owing to the separation of variables, however, each solution will consist of

two parts: a radial wave function R(r) and an angular wave function Y(𝜃,𝜙). The solu-
tions to the angular part are referred to as the spherical harmonics, a fairly common

type of function in a wide variety of physical problems. Furthermore, because there

are three variables, the solutions to Equation (4.4) will be subject to three different

quantum numbers (Q.N.): n, l, and ml. The three quantum numbers can only assume

the values given and have the designations listed at the right. Thus, for instance, when

n= 3, l can equal 0, 1, or 2. If l= 2, ml can be −2, −1, 0, 1, or 2.

n= 1, 2, 3, … Principal Q.N.

l= 0, 1, 2, … , n − 1 Azimuthal Q.N.

ml = 0, ±1, ±2, … , ±l Magnetic Q.N.

The solutions to the Schrödinger equation for the hydrogen atom are shown in

Table 4.1 for the first few sets of quantum numbers. By analogy to the Bohr model of

the hydrogen atom, each set of three quantum numbers specifies a particular orbital,

instead of an orbit. An orbital is nothing more than one of the allowed wave function

solutions to the Schrödinger equation for an electron in the hydrogen atom. Each

orbital is given a symbol, such as the 2pz orbital, where the numeral indicates the

value of the principal quantum number, the letter indicates the value of the azimuthal

quantum number (l= 0, 1, 2, and 3 correspond with the letters s, p, d, and f ), and the

subscript has to do with the magnetic quantum number. To a first approximation,

the principal quantum number determines an orbital’s size, the azimuthal quantum

number is reflective of its shape, and the magnetic quantum number indicates its

relative orientation in space.

4.1.1 The Radial Wave Functions

The radial wave functions all show an exponential decay as the radius increases.

The exponential decay is slower with increasing n because the denominator in the

exponential term contains a factor of na0. Thus, the average radius (or size) of an

orbital also increases with n. For n> 1, the radial functions all have at least one radial
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4.1 THE HYDROGEN ATOM 83

TABLE 4.1 Mathematical forms of the radial wave functions, R(r), and angular wave functions, Y(𝜽, 𝝓), for
the hydrogen atom for the first few sets of allowed quantum numbers, where a0 =52.9 pm, the Bohr radius.

n, l, ml R(r) Y(𝜃, 𝜙) Orbital

1, 0, 0 2

(
Z

a0

)3∕2

e
−
Zr

a0
(
1

4π

)1∕2
1s

2, 0, 0
(

Z

2a0

)3∕2 (
2 − Zr

a0

)
e
−
Zr

2a0
(
1

4π

)1∕2
2s

2, 1, 0 1√
3

(
Z

2a0

)3∕2 (
Zr

a0

)
e
−
Zr

2a0

(
3

4π

)1∕2

cos 𝜃 2p0

2, 1, 1 1√
3

(
Z

2a0

)3∕2 (
Zr

a0

)
e
−
Zr

2a0

(
3

8π

)1∕2

sin 𝜃ei𝜙 2p+1

2, 1, −1 1√
3

(
Z

2a0

)3∕2 (
Zr

a0

)
e
−
Zr

2a0

(
3

8π

)1∕2

sin 𝜃 e−i𝜙 2p−1

3, 0, 0 2

27

(
Z

3a0

)3∕2
(
27 − 18Zr

a0
+ 2Z2r2

a2
0

)
e
−
Zr

3a0
(
1

4π

)1∕2
3s

3, 1, 0 1

81
√
3

(
2Z

a0

)3∕2 (
6 − Zr

a0

)
Zr

a0
e
−
Zr

3a0

(
3

4π

)1∕2

cos 𝜃 3p0

3, 1, 1 1

81
√
3

(
2Z

a0

)3∕2 (
6 − Zr

a0

)
Zr

a0
e
−
Zr

3a0

(
3

8π

)1∕2

sin 𝜃ei𝜙 3p+1

3, 1, −1 1

81
√
3

(
2Z

a0

)3∕2 (
6 − Zr

a0

)
Zr

a0
e
−
Zr

3a0

(
3

8π

)1∕2

sin 𝜃 e−i𝜙 3p−1

3, 2, 0 1

81
√
15

(
2Z

a0

)3∕2(
Zr

a0

)2

e
−
Zr

3a0
(

5

16π

)1∕2
(3cos2𝜃 − 1) 3d0

3, 2, 1 1

81
√
15

(
2Z

a0

)3∕2(
Zr

a0

)2

e
−
Zr

3a0
(
15

8π

)1∕2
sin 𝜃 cos 𝜃 ei𝜙 3d+1

3, 2, −1 1

81
√
15

(
2Z

a0

)3∕2(
Zr

a0

)2

e
−
Zr

3a0
(
15

8π

)1∕2
sin 𝜃 cos 𝜃 e−i𝜙 3d−1

3, 2, 2 1

81
√
15

(
2Z

a0

)3∕2(
Zr

a0

)2

e
−
Zr

3a0
(
15

32π

)1∕2
sin2𝜃e2i𝜙 3d+2

3, 2, −2 1

81
√
15

(
2Z

a0

)3∕2(
Zr

a0

)2

e
−
Zr

3a0
(
15

32π

)1∕2
sin2𝜃e−2i𝜙 3d−2

node. For the 2s orbital, for instance, which has the quantum numbers n= 2, l= 0,

ml = 0, the radial node occurs when r= 2a0/Z because this makes the second term

in the parentheses zero (a0 = 52.9 pm, the Bohr radius). A general rule is that there

are n − l − 1 radial nodes. Thus, a 2s orbital has one radial node, while a 2p orbital

has no radial nodes.

When a wave function or a product of wave functions is integrated over all space,

the volume element in Cartesian coordinates is d𝜏 = dx dy dz. In polar coordinates,
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84 4 ATOMIC STRUCTURE

FIGURE 4.2
Definition of the volume
element d𝜏 in polar coordinates:
d𝜏 =dV= r2 sin𝜃 dr d2𝜃 d𝜙. [©
University Science Books, Mill
Valley, CA. Used with permission.
All rights reserved. McQuarrie,
D. A.; Simon, J. D. Physical
Chemistry: A Molecular
Approach, 1997.]

z

r sin θdϕ

r sin θ

rdθ

r
dθ

dϕϕ

θ

rdθ

dr

dr

x

y

r sin
 θdϕ

however, the volume element becomes d𝜏 = dV= r2 sin𝜃 dr d𝜃 d𝜙, as shown in

Figure 4.2.

A more useful quantity than the radial wave function is the radial distribution

function, also called the radial probability function. The radial distribution function is the

probability that the electron will exist in a thin volume element dV at a distance r

from the nucleus. One way of visualizing this is to think of the volume element as a

thin spherical shell, similar to one of the layers in an onion skin, existing at a distance

r away from the nucleus. The volume element dV shown in Figure 4.2 represents a

fraction of this “onion skin.” Because the probability of finding an electron in a given

region of space goes as the square of the wave function (the Born interpretation), the

radial distribution function is equal to R(r)2 dV. The volume of a sphere is V= (4/3)𝜋r3,
and therefore dV/dr= 4𝜋r2. Following substitution, the radial distribution function is

defined as 4𝜋r2R(r)2 dr. Plots of the radial distribution function for the first several

types of orbitals in the hydrogen atom are shown in Figure 4.3. The presence of

the radial nodes is clearly indicated on the diagram. A second noteworthy feature

is that the probability of the electron being close to the nucleus for a given value

of n decreases in the order s> p> d> f . In other words, the s orbital “penetrates”

the nucleus better than a p orbital having the same principal quantum number. This

fact is of utmost importance in the forthcoming section of shielding and influences

a large number of an element’s chemical properties.

Example 4-1. Use Equation (3.18) to prove that the Bohr radius a0 has a value

of 52.9 pm when n= 1.

Solution. Using Equation (3.18) and solving for r yields:

r =
4π𝜀0 n2h2

4π2me2
=

(1.113 × 10−10 C2∕Jm)(6.626 × 10-34 J s)2

4(3.1416)2(9.109 × 10−31 kg)(1.602 × 10−19 C)2

= 5.29 × 10−11 m = 52.9pm
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4.1 THE HYDROGEN ATOM 85
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FIGURE 4.3
The radial function R(r) (a) and
the radial distribution function
(b) for several types of orbitals in
the hydrogen atom. The y-scale
varies from one orbital to the
next.

Example 4-2. Show that the most probable radius for an electron in the 1s

orbital of hydrogen is equal to the Bohr radius, a0.

Solution. The most probable radius can be obtained from the highest peak

in the radial distribution function, because this function is a measure of the

probability of finding an electron in a volume element at a certain distance

from the nucleus. Because the radial distribution function for a 1s orbital has

a single peak, the radius at which this peak occurs can be calculated by taking

the first derivative of the function with respect to r and setting it equal to

zero. For a 1s orbital, R(r) and the first derivative of the radial probability

function are

R(r) = 2

(
Z

a0

)3∕2
e
− Zr
a0
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86 4 ATOMIC STRUCTURE

d(4π2r2R2)
dr

= d

dr

[
16π2

(
Z

a0

)3

r2e
− 2Zr

a0

]

= 16π2
(
Z

a0

)3 [
2re

− 2Zr
a0 − 2Z

a0
r2e

− 2Zr
a0

]
= 0

which implies that [2r − 2Z

a0
r2] = 0

Hence, r= ao/Z. Because Z= 1 for H, r= a0 = 52.9 pm, the same result as in

the Bohr model of the atom.

Example 4-3. At what distance from the nucleus does the radial node in a 2s

orbital occur?

Solution. The radial wave function for a 2s orbital is given here:(
Z

2a0

)3∕2(
2 − Zr

a0

)3∕2
e
− Zr

2a0

Setting the middle term equal to zero, we find that 2 = Zr

a0
and hence r = 2a0

Z

= 106 pm.

4.1.2 The Angular Wave Functions

The solutions to the angular part of the hydrogen atom are known as the spherical

harmonics. The angular wave functions Y(𝜃,𝜙) depend on two variables and are there-

fore governed by the quantum numbers l and ml. It is these quantum numbers that

dictate the shape of the atomic orbitals. Thus, for example, all of the s orbitals are

spherical regardless of their principal quantum number and they each have the same

angular dependence on 𝜃 and 𝜙. Because l= 0 for s orbitals, ml can only be zero;

therefore, only one type of s orbital exists for any given value of n. By contrast, there

are three different kinds of p orbitals because ml can take values of −1, 0, or +1.
The shapes of these orbitals are shown in Figure 4.4, where the orbital boundary

indicates a 90% or greater probability of finding the electron in the enclosed region

of space. When ml = 0, the angular wave function is real, and the shape of the orbital

consists of two lobes that lie along the z coordinate axis. Because its lobes lie along

the z-axis, the p0 orbital is also known as the pz orbital. The sign of the wave func-

tion before squaring is also indicated in the figure. Notice that one of the lobes is

positive while the other is negative and therefore an angular nodal surface exists in

FIGURE 4.4
Shapes of the three p orbitals.
[Modified from http://en
.wikipedia.org/wiki/Atomic_
orbital (accessed November 30,
2013).]

x
y

z

pz px py
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4.1 THE HYDROGEN ATOM 87

y

z

x

y

z

x

y

z

x

+ =

2p+1 2p–1 2py

FIGURE 4.5
Illustration of how a linear combination of the 2p+1 and 2p−1 orbitals can be used to construct the more familiar
2py orbital. [Images by Lisa M. Goss. Used by permission.]

the xy plane. As a rule, every orbital will exhibit l angular nodal surfaces, which can

be either planar or conical in shape. Thus, all three of the p orbitals will have a single

angular nodal plane. Likewise, each d orbital will have two angular nodal surfaces and

each f orbital will have three.

Although the angular wave functions of orbitals having |ml|> 0 all contain imag-

inary components in their exponential terms, the product Y*Y is real and can there-

fore be plotted. The angular dependence of the 2p orbitals having ml =−1 and

ml =+1 are identical. Both orbitals take on the shape of a donut with the z-axis

passing through the center of the donut hole. The only difference between the two

orbitals is that the electron is moving in opposite directions in each of them. Because

of the requirement that all quantum mechanical operators be linear and Hermitian,

any linear combination of two degenerate wave functions will also be an accept-

able solution to the Schrödinger equation. When the positive linear combination

Y(1,1)+ Y(1,−1) is taken, as shown in Equation (4.6), where the numbers in parenthe-

ses refer to l and ml, respectively, the equation for the familiar py orbital is obtained

after normalization, as shown in Figure 4.5. When the negative linear combination

Y(1,1) − Y(1,−1) is taken, as shown in Equation (4.7), the equation for the px orbital

results after normalization. This process is also known as the hybridization of atomic

orbitals. As shown in Figure 4.4, the px hybrid orbital has its lobes lying along the

x-axis, while the py hybrid has its lobes lying along the y-axis. According to quantum

theory, the hybrid orbitals must also be orthogonal to one another. These particular

linear combinations ensure that all three p orbitals will have the same shape with

their lobes pointing along the three orthogonal Cartesian axes.

Y(1, 1)∗ Y(1, 1) = Y(1,−1)∗ Y(1,−1) = 3

8π
sin2𝜃 (4.5)

Normalization means that the integral of Y*Y over all space must equal unity.

Because each of the original wave functions Y(1,1) and Y(1,−1) are normalized and

have integrals of one, the integral of the positive linear combination must equal two.

Therefore, N= 2 in the normalization equation and the normalizing coefficient is

c= 1/21/2.

px =
1√
2
(Y(1, 1) + Y(1,−1)) = 1√

2

(
3

8π

)1∕2
[sin 𝜃 ei𝜙 + sin 𝜃 e−i𝜙] =

1√
2

(
3

8π

)1∕2
sin 𝜃 [cos𝜙 + i sin𝜙 + cos𝜙 − i sin𝜙] = 1√

2

(
3

8π

)1∕2
sin 𝜃 cos𝜙

(4.6)
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88 4 ATOMIC STRUCTURE

FIGURE 4.6
Shapes of the five d orbitals.
[Modified from http://en
.wikipedia.org/wiki/Atomic_
orbital (accessed November 30,
2013).] dxz dyz dxy

dz
2 dx

2 – y
2

x
y

z

For normalization of the negative linear combination, the i factors out in the

determination of the normalizing coefficient because of the complex conjugate in

Equation (3.54), such that:

py =
−i√
2
(Y(1, 1) − Y(1,−1)) = − i√

2

(
3

8𝜋

)1∕2
[sin 𝜃 ei𝜙 − sin 𝜃 e−i𝜙] =

− i√
2

(
3

8𝜋

)1∕2
sin 𝜃 [cos𝜙 + i sin𝜙 − cos𝜙 + i sin𝜙] = 1√

2

(
3

8𝜋

)1∕2
sin 𝜃 sin𝜙

(4.7)

The five different kinds of d orbitals are shown in Figure 4.6.

When ml = 0, the dz
2 orbital results. This orbital has two lobes of the same

sign pointing along the z-axis, with a donut-shaped lobe of the opposite sign in the

xy plane. Notice that there are two conical nodes, each beginning at the origin and

pointing in a different direction along the z-axis. When |ml|= 1, the product Y*Y

yields a probability function containing two donuts centered on the z-axis, where

one lies above the xy plane and the other lies beneath it. When |ml|= 2, the product

Y*Y looks similar to a single hollow donut lying in the xy plane, as shown in Figure 4.7.

Taking the positive and negative linear combinations of Y(2,1) with Y(2,−1) yields the
dxz and the dyz orbitals shown in Figure 4.6. Both of these orbitals contain four lobes

(as in a four-leaf clover) of alternating sign of the wave function and lying in the xz

and yz planes, respectively. Each of the four lobes lies between the coordinate axes.

Likewise, linear combinations of the Y(2,2) and Y(2, −2) wave functions yield the dxy
and dx

2
−y

2 orbitals shown in Figure 4.6. Both orbitals lie in the xy plane and have

the same alternating four-leaf clover shape. However, the dxy orbital has its lobes

pointing between the coordinate axes, while the dx
2
−y

2 orbital’s lobes lie squarely

on the coordinate axes. The names and shapes of the five d-orbitals are especially

important in the field of coordination chemistry and should be memorized by the

student at this time.
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y

z

x

y

z

x

y

z

x

+ =

3d+2 3d–2 3dx2–y2

FIGURE 4.7
Illustration of how a linear
combination of the 3d+2 and
3d−2 orbitals can be used to
construct the more familiar
3dx

2
−y

2 orbital. [Images by Lisa
M. Goss. Used by permission.]

Example 4-4. Write the mathematical form of the angular part of the wave

function for the dxz and dyz orbitals by taking the positive and negative linear

combinations of Y(2,1) with Y(2,−1), respectively.

Solution. The positive linear combination (dxz) of Y(2,1) with Y(2,−1) is given
by

dxz =
1√
2
(Y(2, 1) + Y(2,−1)) = 1√

2

(
15

8π

)1∕2

[sin 𝜃 cos 𝜃(cos𝜙 + i sin𝜙 + cos𝜙 − i sin𝜙)]

=
(
15

4π

)1∕2
sin 𝜃 cos 𝜃 cos𝜙

The negative linear combination (dyz) of Y(2,1) with Y(2,−1) is given by

dyz = − i√
2
(Y(2, 1) − Y(2,−1)) = − i√

2

(
15

8π

)1∕2

[sin 𝜃 cos 𝜃 (cos𝜙 + i sin𝜙 − cos𝜙 + i sin𝜙)]

=
(
15

4π

)1∕2
sin 𝜃 cos 𝜃 sin𝜙

The shapes of the seven f orbitals are shown in Figure 4.8. When ml = 0, the

fz
3 orbital results, which has lobes of opposite sign along the z-axis and two donuts

encircling that axis that also have opposite signs. For |ml|= 1, the positive and neg-

ative linear combinations Y(3,1)± Y(3,−1) yield the fxz
2 and fyz

2 orbitals, which have

six lobes each lying in the xz and yz planes, respectively. For |ml|= 2, the two hybrids

are the fxyz and fz(x
2
−y

2
) orbitals. Both of these orbitals have eight lobes forming a

cubic shape, with the former lying between the x- and y-axes and the latter lying

on the coordinate axes. Lastly, for |ml|= 3, the hybrid orbitals are the fx(x
2
−3y

2
) and

fy(3x
2
−y

2
) orbitals, which have six lobes each lying in the xy plane. The shapes of the

seven f-orbitals are typically unimportant in chemical bonding and do not need to

be memorized.

Several features common to all of the atomic orbitals are as follows:

• For any given value of l, the summation of the electron density probabilities

for the complete set of orbitals will be a sphere. This is known as Unsöld’s

theorem. Thus, for example, the sum of the electron density for the 2px, 2py,

and 2pz orbitals is a sphere, as is the case for the lone 2s orbital.
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90 4 ATOMIC STRUCTURE

FIGURE 4.8
Shapes of the seven f orbitals,
with |ml| increasing from left to
right in the diagram. [Modified
from http://en.wikipedia
.org/wiki/Atomic_orbital
(accessed November 30, 2013).]

fz
3

fxyz

fxz
2 fyz

2

x
y

z

fz(x
2 – y2) fx(x

2 – 3y2) fy(3x2 – y2)

• The absolute value of ml is the number of angular nodes that present them-

selves when the orbital is viewed from either direction along the z-axis. Thus,

a pz orbital (ml = 0), when viewed from the “top” of the z-axis, will present

with a positive lobe. The negative lobe that lies beneath this will not be

observed from this vantage point. However, the px and py orbitals (|ml| =1)
will each present one angular nodal plane when viewed along the z-axis.

• The symmetry of the atomic orbitals with respect to inversion alternates in

a regular pattern. The inversion operation means that if one takes any point

(x, y, z) back through the origin an equal distance to point (−x, −y, −z), the
probability density will be identical in magnitude and sign. All s and d orbitals

are symmetric (or gerade) with respect to inversion. All p and f orbitals are

antisymmetric (or ungerade) with respect to inversion (they have the opposite

sign). More generally, whenever l is odd, the atomic orbitals will be gerade and

whenever l is even, they will be ungerade.

Example 4-5. Prove that the total probability density for the three 2p orbitals

is a sphere.

Solution. The sum of the squares of the angular components of the wave func-

tions for the three 2p orbitals is(
3

4π

)
[cos2𝜃+ sin2𝜃cos2𝜙+ sin2𝜃sin2𝜙] =

(
3

4π

)
[cos2𝜃+ sin2𝜃(cos2𝜙+ sin2𝜙)]

We can ignore the coefficient in front just as we ignored the radial part of the

wave function because these just relate to the radius of the orbital summation

and have nothing to do with its shape. We can also use the trigonometric identity

that cos2(a)+ sin2(a)= 1. Thus, the equation reduces to

[cos2𝜃 + sin2𝜃(1))] = [cos2𝜃 + sin2𝜃] = 1

Because the total angular component is a constant, there is no net angular

dependence and the overall shape is that of a sphere.
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4.2 POLYELECTRONIC ATOMS 91

4.2 POLYELECTRONIC ATOMS

Whenever two or more electrons are present in an atom or ion, an exact solution
to the Schrödinger equation cannot be obtained because of the electron correlation
problem. Consider any given electron in a polyelectronic atom. The electrostatic field
experienced by this electron cannot be known exactly because of the Heisenberg
uncertainty principle, which states that the exact position of other electrons cannot
be measured precisely. In order to circumvent this problem, an approximation
method is used. The most common approximation technique is known as the
self-consistent field (SCF) method. Using this procedure, a reasonable wave function is
used as a first approximation for all but one of the electrons. Then, the force field
felt by this one electron is calculated to obtain a wave function for the electron.
Next, a second electron is chosen and the wave function just obtained for the
first electron is used in the calculation of the force field that the second electron
experiences. This method is repeated for each of the electrons in an iterative
process until the force field for each electron begins to converge to a single value;
or in other words, when a SCF results. This field is then used to calculate the
approximate wave function solutions (known as the Hartree–Fock equations) to the
polyelectronic Schrödinger equation.

The following is an example of the SCF method in practice in the treatment of
the two electrons present in a helium atom. Because helium has two electrons orbit-
ing a +2 nucleus, it presents itself as the three-body problem shown in Figure 4.9,
where the nucleus is presumed to be at rest and therefore sits at the origin of
the coordinate system. The Hamiltonian for the helium atom includes three poten-
tial energy terms: an attractive force between electron 1 and the nucleus (r1), an
attractive force between electron 2 and the nucleus (r2), and the electron–electron
repulsion between the two electrons (r12), as shown in Equation (4.8).

Ĥ =
[
− ℏ2

2m
∇2

1
− ℏ2

2m
∇2

2
− Ze2

4π𝜀0r1
− Ze2

4π𝜀0r2
+ e2

4π𝜀0r12

]
(4.8)

We allow the overall wave function to be a product of two wave functions, one
for each individual electron, as shown in Equation (4.9). The effective Hamiltonian for
electron 1 can then be calculated using Equation (4.10), where Veff is the effective
potential energy that electron 1 feels with respect to electron 2 and is given by
Equation (4.11).

𝜓(r1, r2) = 𝜙(r1)𝜙(r2) (4.9)

Ĥeff
1
(r1) =

[
− ℏ2

2m
∇2

1
− Ze2

4π𝜀0r1
+ Veff

1

]
(4.10)

Veff
1
(r1) = ∫ 𝜙 ∗ (r2)

e2

4π𝜀0r12
𝜙(r2)dr2 (4.11)

–e

–e

+2e

He nucleus

r12

r1

Electron 1
(x1, y1, z1)

Electron 2
(x2, y2, z2)

r2

(0, 0, 0)

FIGURE 4.9
Definition of the different
potential energy interactions
between the two electrons and
the +2 nucleus in a helium atom.
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92 4 ATOMIC STRUCTURE

There are, of course, two additional equations corresponding to Equations (4.10)
and (4.11) for the second electron. We begin by assuming a reasonable wave func-
tion (such as a 1s hydrogen wave function) for the second electron 𝜙(r2) and then
using this wave function to evaluate the effective potential energy that electron 1
experiences according to Equation (4.11). This will allow a suitable effective
Hamiltonian to be calculated for electron 1 using Equation (4.10). Next, we solve
the Schrödinger equation using our effective Hamiltonian for electron 1, as shown
by Equation (4.12)

Ĥeff
1
(r1)𝜙(r1) = E1𝜙(r1) (4.12)

We then substitute the resulting value for 𝜙(r1) into the effective potential
energy equation for electron 2. This value is then used in the equation that cor-
responds to Equation (4.10) to determine the effective Hamiltonian for electron 2.
Then the Schrödinger equation corresponding to Equation (4.12) for electron 2 is
solved in order to determine a new value for 𝜙(r2). The whole process is repeated
in an iterative manner until the wave functions for 𝜙(r1) and 𝜙(r2) no longer change
with time. We call this a SCF and the two resulting wave functions obtained by this
method are known as the Hartree–Fock orbitals.

It is fortunate that whenever the SCF method is employed for any element
or ion having more than one electron, the resulting wave functions always tend to
resemble those of the hydrogen atom. Hence, the probability electron densities for
the other elements can be compared to the hydrogenic orbital shapes. However, these
wave functions are not identical to those of hydrogen, and the following differences
should be noted:

• All of the hydrogenic orbitals contract as Z increases.

• Unlike the hydrogen atom, where the energies of the orbitals depend only
on the principal quantum number, the energies of the hydrogenic orbitals
also depend on the magnitude of l. For any given value of n, the energies
of the hydrogenic orbitals for a polyelectronic atom increase in the order:
s< p< d< f. The lowered degeneracy is a direct result of the differing degrees
of penetration of the nucleus that the electrons in these orbitals exhibit.
Comparing the radial distribution functions for a 3d, 3p, and 3s electron in
Figure 4.3, it is apparent that an electron in the 3s orbital will have a higher
probability of residing closer to the nucleus than will a 3p or a 3d electron.
Thus, an electron in a 3d orbital of iron, for instance, will be somewhat
shielded (or screened) from feeling the full effect of the +26 charge of the
nucleus by any electrons that have a higher probability of lying closer to the
nucleus. Therefore, the effective nuclear charge that the 3d electron feels will
be less than that of a 3p or a 3s electron. Consequently, a 3d electron will be
held less tightly by the nucleus than a 3s or 3p electron and will therefore lie
at higher energy, as shown in Figure 4.10.

• As a result of the different energies of the s, p, d, and f hydrogenic orbitals
having the same value of n, some overlapping of orbital energies between
different principal quantum numbers occurs. Madelung’s rule (also known as
Klechkowski’s rule) states that, as a general principle, hydrogenic orbital fill-
ing proceeds from the lowest available sum of n+ l. If there is more than one
combination yielding the same value of n+ l, then the filling will occur first for
the smallest value of n. Using Madelung’s rule, where n+ l is shown in paren-
theses, the order of filling for the one-electron hydrogenic orbitals (ignoring
electron–electron repulsions) is

1s(1) < 2s(2) < 2p(3) < 3s(3) < 3p(4) < 4s(4) < 3d(5) < 4p(5) <

5s(5) < 4d(6) < 5p(6) < 6s(6) < 4f (7) < 5d(7) < 6p(7) < 7s(7) <

5f (8) < 6d(8) < 7p(8)
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FIGURE 4.10
Energy ordering of the
hydrogenic orbitals in a
polyelectronic atom.
[Reproduced from
http://en.wikibooks.org/
wiki/High_School_Chemistry/
Families_on_the_Periodic_Table
(accessed November 30, 2013).]
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FIGURE 4.11
Moeller’s rubric for the general
order of orbital filling using the
one-electron hydrogenic
orbitals.

The same ordering is obtained if one employs Moeller’s rubric, which is shown

in Figure 4.11. This general ordering of the hydrogenic orbitals neatly mimics the

pattern of the periodic properties of the elements that were first discovered in the

late 1860s by Dmitri Mendeleev and J. Lothar Meyer. A version of the periodic table

showing its correlation with orbital filling is shown in Figure 4.12.

4.3 ELECTRON SPIN AND THE PAULI PRINCIPLE

A fourth quantum number, called the spin quantum number, is required when the

relativistic effects of electronic motion are taken into consideration. The concept

of electron spin was first postulated by Goudsmit and Uhlenbeck in 1925 in order

to explain the fine structure (or splitting) of the line spectra of several of the alkali

metals. For example, the yellowish glow of many incandescent lights found in large

city parking lots is actually due to two very closely spaced lines in the emission

spectrum of Na. The two sodium D-lines, which arise from a transition between

3p and 3s hydrogenic orbitals, have wavelengths of 588.9950 and 589.5924 nm. The
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94 4 ATOMIC STRUCTURE

FIGURE 4.12
Periodic table showing the
correlation with Moeller’s rubric
for orbital filling.

1s

2s

s-block

p-block

d-block

f-block

3s

4s

5s

6s

7s

2p

1s

3p

4p

5p

6p

7p

3d

4d

5d

4f

5f

6d

FIGURE 4.13
(a,b) Schematic diagram of the
Stern–Gerlach experiment,
showing how a beam of Ag
atoms can be split by an
inhomogeneous magnetic field
into two different trajectories as
a result of the different spin
states they possess. [(a,b)
Attributed to Theresa Knott,
reproduced from http://en
.wikipedia.org/wiki/Stern%E2%
80%93Gerlach_experiment
(accessed November 30, 2013).]
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Stern–Gerlach experiment, depicted in Figure 4.13, provided the first experimental

confirmation for the quantization of electron spin. In their 1922 experiment, Otto

Stern and Walther Gerlach showed that a beam of silver atoms could be split into

two beams by passing it through an inhomogeneous magnetic field. In addition to

electrons, many nuclei also exhibit spin, forming the basis of nuclear magnetic reso-

nance (NMR) and electron spin resonance (ESR) analytical techniques.

In 1928, Paul Dirac developed a relativistic theory of quantum mechanics

from which the concept of spin arose naturally. The inclusion of a fourth variable

(time) required the presence of a fourth quantum number. According to Dirac’s

derivation, an electron possesses both orbital (L) and spin (S) angular momentum.

The total angular momentum ( J ) is a linear combination of the two, as shown in

Equation (4.13).

Ĵ = L̂ + Ŝ = −iℏ 𝜕

𝜕𝜙
± ℏ

2
(4.13)

The spin angular momentum vector S can take values of ±ms ℏ/2, where ms

can take values of +1/2 (𝛼) or −1/2 (𝛽), depending on whether it aligns against or

with the external magnetic field, respectively. The usual classical picture of electron

spin, where the electron can be considered as a top spinning on its axis either in the
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4.3 ELECTRON SPIN AND THE PAULI PRINCIPLE 95

clockwise or the counterclockwise direction, is only useful as a conceptual tool. In

actuality, spin is strictly a quantum mechanical phenomenon and it has no classical

analogy.

The introduction of a fourth quantum number to account for the spin angular

momentum of an electron also necessitates the introduction of a sixth fundamental

postulate of quantum mechanics.

Postulate 6: The total wave function must be antisymmetric with respect to the

interchange of all coordinates of one fermion with those of another. The Pauli exclu-

sion principle, which states that no two electrons within an atom can have the same

set of quantum numbers, is a direct result of this antisymmetry principle.

Another way of thinking about the Pauli exclusion principle is to give each elec-

tron in an atom its own electronic (e-mail) address. For instance, at one point in

time, my e-mail address was brpfennig@vaxsar.vassar.edu. One could think of my

e-mail address as consisting of four quantum numbers. The principal quantum num-

ber here would be the .edu domain, which identifies this electron (me) as belonging

to the realm of educational institutions. The second quantum number in my e-mail

address gets a little more specific and identifies me at Vassar College, where I used

to teach. The third quantum number is even more specific, sending my junk mail to

the Vaxsar server (clever, huh?) at the college. Finally, the mail is delivered specifi-

cally to me. Just as there are no two people in the world having the exact same email

address, there are no two electrons within an atom that can have the same set of all

four quantum numbers: n, l, ml, and ms.

Returning to the helium atom, suppose that electrons 1 and 2 occupy the two

states a and b, respectively. The wave function in Equation (4.14) would be unaccept-

able because the two electrons are distinguishable upon interchange. Taking linear

combinations of the product of the two states, however, provides two acceptable

wave functions because now the electrons become indistinguishable upon inter-

change, as shown in Equations (4.15) and (4.16). The former of these equations

is symmetric with respect to electron exchange (it yields the same mathematical

expression), while the latter is antisymmetric.

𝜓 = 𝜓a(1)𝜓b(2) ≠ 𝜓a(2)𝜓b(1) (4.14)

𝜓+ = 1√
2
[𝜓a(1)𝜓b(2) + 𝜓a(2)𝜓b(1)] (4.15)

𝜓− = 1√
2
[𝜓a(1)𝜓b(2) − 𝜓a(2)𝜓b(1)] (4.16)

For the same pair of electrons, the spins of the two electrons could be both

positive [𝛼(1)𝛼(2)], both negative [𝛽(1)𝛽(2)], or some linear combination of the two:

1∕
√
2[𝛼(1)𝛽(2) + 𝛼(2)𝛽(1)] or 1∕

√
2[𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)]. The former three spin

functions are symmetric with respect to interchange, while the latter is antisymmet-

ric. Because it is the total wave function (spatial plus spin) that must be antisymmetric

according to the Pauli principle, of the eight possible combinations between the two

spatial wave functions given in Equations (4.15) and (4.16) with the four spin wave

functions, only the following are antisymmetric overall:

𝜓+ = 1

2
[𝜓a(1)𝜓b(2) + 𝜓a(2)𝜓b(1)][𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)] (4.17)

𝜓− = 1√
2
[𝜓a(1)𝜓b(2) − 𝜓a(2)𝜓b(1)][𝛼(1)𝛼(2)] (4.18)

𝜓− = 1√
2
[𝜓a(1)𝜓b(2) − 𝜓a(2)𝜓b(1)][𝛽(1)𝛽(2)] (4.19)
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96 4 ATOMIC STRUCTURE

𝜓− = 1√
2
[𝜓a(1)𝜓b(2) − 𝜓a(2)𝜓b(1)][𝛼(1)𝛽(2) + 𝛼(2)𝛽(1)] (4.20)

Any two electrons occupying the same orbital would have a symmetric spatial

wave function. Therefore, their spin wave functions must be antisymmetric, as is the
case for Equation (4.17). In other words, the Pauli exclusion principle states that no
two electrons in the same atom may have all four quantum numbers the same. Each

electron in an atom must possess a unique set of quantum numbers. As a result,
every hydrogenic orbital in a polyelectronic atom can hold at most two electrons,
and then if and only if their electron spins are opposite. Hence, the sets of s, p, d,

and f orbitals for a given value of n can hold a maximum of 2, 6, 10, and 14 electrons,
as suggested by the blocks of elements shown in Figure 4.12.

4.4 ELECTRON CONFIGURATIONS AND THE PERIODIC
TABLE

The Aufbau (or “building up”) principle uses one-electron (hydrogenic) atomic orbital

energies to predict the electron configurations of polyelectronic atoms. The elec-
trons are placed into the orbitals one at a time to form the lowest energy configura-
tion that s consistent with the Pauli exclusion principle and Hund’s rule of maximum

multiplicity. Hund’s rule requires that the electrons be placed in a degenerate set
of orbitals in such a way as to maximize the spin multiplicity. The spin multiplicity is
defined as 2S+ 1, where S is the sum of thems values for all of the electrons. Because

S= 0 for any combination of paired electrons, the spin multiplicity is solely deter-
mined by the number of unpaired electrons. Using the Aufbau principle, along with
Madelung’s rule, the electron configuration ofN is 1s22s22p3. Hund’s rule implies that

the three electrons in the 2p orbitals all have identical spins and are unpaired. Any
atom that has unpaired electrons will be paramagnetic and will be strongly attracted

by a magnetic field. Atoms that have all their electrons paired are diamagnetic and are
weakly repelled by a magnetic field. The electron configurations for the 118 elements
are shown in Table 4.2. In order to avoid having to write out lengthy descriptions

for the entire electron configuration of the heavier elements, a short-hand method
is used whereby a set of square brackets containing the symbol for the most recent
noble gas is used to abbreviate the electron configuration.

The astute reader will notice that there are quite a few exceptions to the
electron configurations predicted by the Aufbau principle. This is because the hydro-
genic orbitals only have meaning for one-electron systems. Whenever there is more

than one electron, electron–electron repulsions must also be considered. Consider
the case of the two electrons discussed, electrons 1 and 2, occupying the states

a and b. There were four allowed wave functions for this particular case, given by
Equations (4.17)–(4.20). The energies of the unperturbed wave functions are shown
in Figure 4.14 at left. Because both of the electrons are negatively charged, there

exists a coulombic repulsion between them whenever the electrons are in differ-
ent regions of space. As a result of this repulsion, which is given by the Coulomb
integral j, the total energy of the system will be raised as shown in Figure 4.14, center.

When the two electrons occupy the same region of space (the overlap region),
the energies of the four different wave functions are no longer degenerate. When
the electrons are all paired, S= 0 and the spin multiplicity is 1, forming a singlet

state, S, which is singly degenerate. The wave function that describes this state is the
one given by Equation (4.17), where the spatial portion of the total wave function

is symmetric with respect to interchange. The spatially symmetric state tends to
bring the electrons together into the same region of space. Therefore, the energy
of the singlet state will be raised even further in Figure 4.14 as a result of the larger
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4.4 ELECTRON CONFIGURATIONS AND THE PERIODIC TABLE 97

TABLE 4.2 Electron configurations for the elements in terms of the one-electron, hydrogenic orbitals.

Symbol Z Configuration Symbol Z Configuration

H 1 1s1 Nd 60 [Xe]6s24f4

He 2 1s2 Pm 61 [Xe]6s24f5

Li 3 [He]2s1 Sm 62 [Xe]6s24f6

Be 4 [He]2s2 Eu 63 [Xe]6s24f7

B 5 [He]2s22p1 Gd* 64 [Xe]6s24f75d1

C 6 [He]2s22p2 Tb 65 [Xe]6s24f9

N 7 [He]2s22p3 Dy 66 [Xe]6s24f10

O 8 [He]2s22p4 Ho 67 [Xe]6s24f11

F 9 [He]2s22p5 Er 68 [Xe]6s24f12

Ne 10 [He]2s22p6 Tm 69 [Xe]6s24f13

Na 11 [Ne]3s1 Yb 70 [Xe]6s24f14

Mg 12 [Ne]3s2 Lu 71 [Xe]6s24f145d1

Al 13 [Ne]3s23p1 Hf 72 [Xe]6s24f145d2

Si 14 [Ne]3s23p2 Ta 73 [Xe]6s24f145d3

P 15 [Ne]3s23p3 W 74 [Xe]6s24f145d4

S 16 [Ne]3s23p4 Re 75 [Xe]6s24f145d5

Cl 17 [Ne]3s23p5 Os 76 [Xe]6s24f145d6

Ar 18 [Ne]3s23p6 Ir 77 [Xe]6s24f145d7

K 19 [Ar]4s1 Pt* 78 [Xe]6s14f145d9

Ca 20 [Ar]4s2 Au* 79 [Xe]6s14f145d10

Sc 21 [Ar]4s23d1 Hg 80 [Xe]6s24f145d10

Ti 22 [Ar]4s23d2 Tl 81 [Xe]6s24f145d106p1

V 23 [Ar]4s23d3 Pb 82 [Xe]6s24f145d106p2

Cr* 24 [Ar]4s13d5 Bi 83 [Xe]6s24f145d106p3

Mn 25 [Ar]4s23d5 Po 84 [Xe]6s24f145d106p4

Fe 26 [Ar]4s23d6 At 85 [Xe]6s24f145d106p5

Co 27 [Ar]4s23d7 Rn 86 [Xe]6s24f145d106p6

Ni 28 [Ar]4s23d8 Fr 87 [Rn]7s1

Cu* 29 [Ar]4s13d10 Ra 88 [Rn]7s2

Zn 30 [Ar]4s23d10 Ac* 89 [Rn]7s26d1

Ga 31 [Ar]4s23d104p1 Th* 90 [Rn]7s26d2

Ge 32 [Ar]4s23d104p2 Pa* 91 [Rn]7s25f26d1

As 33 [Ar]4s23d104p3 U* 92 [Rn]7s25f36d1

Se 34 [Ar]4s23d104p4 Np* 93 [Rn]7s25f46d1

Br 35 [Ar]4s23d104p5 Pu 94 [Rn]7s25f6

Kr 36 [Ar]4s23d104p6 Am 95 [Rn]7s25f7

Rb 37 [Kr]5s1 Cm* 96 [Rn]7s25f76d1

Sr 38 [Kr]5s2 Bk 97 [Rn]7s25f9

Y 39 [Kr]5s24d1 Cf* 98 [Rn]7s25f96d1

Zr 40 [Kr]5s24d2 Es 99 [Rn]7s25f11

Nb* 41 [Kr]5s14d4 Fm 100 [Rn]7s25f12

Mo* 42 [Kr]5s14d5 Md 101 [Rn]7s25f13

Tc 43 [Kr]5s24d5 No 102 ([Rn]7s25f14 )
Ru* 44 [Kr]5s14d7 Lr* 103 [Rn]7s25f147p1

Rh* 45 [Kr]5s14d8 Rf 104 [Rn]7s25f146d2

Pd* 46 [Kr]4d10 Db 105 ([Rn]7s25f146d3)
Ag* 47 [Kr]5s14d10 Sg 106 ([Rn]7s25f146d4)
Cd 48 [Kr]5s24d10 Bh 107 ([Rn]7s25f146d5)
In 49 [Kr]5s24d105p1 Hs 108 ([Rn]7s25f146d6)
Sn 50 [Kr]5s24d105p2 Mt 109 ([Rn]7s25f146d7)
Sb 51 [Kr]5s24d105p3 Ds* 110 ([Rn]7s15f146d9)
Te 52 [Kr]5s24d105p4 Rg* 111 ([Rn]7s15f146d10)
I 53 [Kr]5s24d105p5 Cn 112 ([Rn]7s25f146d10)
Xe 54 [Kr]5s24d105p6 Uut 113 ([Rn]7s25f146d107p1)

(continued)
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98 4 ATOMIC STRUCTURE

TABLE 4.2 (Continued)

Symbol Z Configuration Symbol Z Configuration

Cs 55 [Xe]6s1 Fl 114 ([Rn]7s25f146d107p2)
Ba 56 [Xe]6s2 Uup 115 ([Rn]7s25f146d107p3)
La* 57 [Xe]6s25d1 Lv 116 ([Rn]7s25f146d107p4)
Ce* 58 [Xe]6s24f15d1 Uus 117 ([Rn]7s25f146d107p5)
Pr 59 [Xe]6s24f3 Uuo 118 ([Rn]7s25f146d107p6)

Exceptions to the Aufbau principle are noted with an asterisk. Values in parentheses are calculated, not experimental.

FIGURE 4.14
Energy diagram for a
two-electron, two-state system,
showing the changes in energy
and the degeneracies (in
parentheses) that result from the
electron–electron repulsions.

E

Eo

H(0) H(1) H(2)

(4)

(4)

(1)
S

T (3)
j

2k

Unperturbed
Coulombic
repulsion

perturbation

Electron
exchange

perturbation

electron–electron repulsion. The remaining three wave functions, which possess an

antisymmetric spatial component, form a triplet state, T, which is triply degenerate.

In the antisymmetric spatial wave function, the electrons tend to avoid each other.

This natural tendency of the electrons to stay away from each other decreases the

amount of electron–electron repulsion. Therefore, the triplet state will be lower in

energy than the singlet state, as shown in Figure 4.14 at the right. This observation

is the basis for Hund’s rule of maximum multiplicity, which would also predict that

the triplet state should be more stable than the singlet state. The energy difference

between the two states is given by twice the exchange integral k. The magnitude of

the exchange integral, in turn, is proportional to N(N−1), where N is the number

of unpaired electrons. For those electron configurations that are exceptions to the

Aufbau principle, the exception is usually a result of the increased exchange energy

that results when there are a large number of unpaired electrons. For example, the

electron configuration of Cr is [Ar]4s13d5 instead of the predicted [Ar]4s23d4. The

added stability of the former electron configuration over the latter is due in large

part to the larger number of unpaired electrons that it possesses.

4.5 ATOMIC TERM SYMBOLS

The electron configurations of polyelectronic atoms given by the one-electron

hydrogenic orbitals are an incomplete description of the ways that the electrons

can occupy these orbitals. When the electron configuration of Fe, for instance,

is said to be [Ar]4s23d6 using Madelung’s rule, this ignores the contribution that

the electron–electron repulsions make to the one-electron hydrogenic orbital

energies. For the d6 configuration in Fe, there are actually 210 different ways that

the six electrons can occupy the five d orbitals. Some of these 210 microstates

will have the same values of j and k and therefore have the same energy, while
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4.5 ATOMIC TERM SYMBOLS 99

other combinations will have different energies. Each energy level describes a state,

or a term. It is more realistic for us to think about the electron configurations

of polyelectronic atoms in terms of the energies of their terms instead of the

one-electron hydrogenic orbital energies. The energies of these terms depend on

three factors: (i) the average energy of the one-electron hydrogenic orbitals from

which they are derived, E∘; (ii) the magnitude of the Coulomb integral j; and (iii) the

magnitude of the exchange integral k.

The following method can be used to extract the term symbols (which are used

to describe electronic transitions) from all of the different microstates that the elec-

trons in an atom can assume. Consider the carbon atom, for example. Carbon has

the electron configuration 1s22s22p2. The occupation of the filled 1s and 2s orbitals

is unambiguous. According to the Pauli exclusion principle, there is only one way

that the electrons can occupy each of these singly degenerate orbitals: one with

ms =+1/2 and the other with ms =−1/2. However, there are 15 different ways to

place two electrons into the triply degenerate 2p subshell. These 15 possibilities are

called microstates and are shown in Figure 4.15, where the 15 sets are p orbitals

arranged vertically. The ml quantum number for each p orbital is listed at the left in

the diagram.

In general, the number of Pauli-allowed microstates (M.S.) can be calculated

using the formula given by Equation (4.21), where no is the number of degenerate

orbitals and ne is the number of electrons to be placed in those orbitals.

#M.S. =
(2no) !

ne!(2no − ne) !
(4.21)

Applying this formula to the carbon atom (no = 3, ne = 2), 15 Pauli-allowed

microstates are predicted. For the 3d2 configuration in V3+ (g), there are 45 possible

microstates (no = 5, ne = 2). In the case of electron configurations such as [Ar]4s13d5,

the probabilities are multiplicative. The number of allowed microstates for the s1

configuration is 2, while that for the d5 configuration is 252. Thus, there are 504

possible microstates for a gaseous Cr atom!

As a result of electron–electron repulsions, not all of the microstates for a given

electron configuration will necessarily have the same energy. In the case of carbon,

for instance, it is logical to conclude that the microstates where both electrons are

paired in the same orbital will have a greater coulombic repulsion than those that

are unpaired. Thus, our goal is to take the Pauli-allowed microstates and to extract

from them all those combinations that have the same energy. These are collectively

referred to as states. Each state, or collection of microstates, has its own energy and

can be assigned a symbol, known as a term symbol that characterizes some of the

properties of the state (or term). In general, there are two formalisms for extracting

term symbols from the microstates: Russell–Saunders (RS) coupling and jj coupling.

Each method is discussed individually.

ml

+1

0

–1

FIGURE 4.15
The 15 ways (microstates) that two electrons can occupy the three 2p orbitals.
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100 4 ATOMIC STRUCTURE

4.5.1 Extracting Term Symbols Using Russell–Saunders Coupling

Every electron has both orbital (L) and spin (S) angular momentum. The RS or LS

coupling scheme, which is generally valid for the lighter elements (Z< 30), provides a

mechanism whereby the orbital angular momenta l of the individual electrons couple

together to produce a total orbital angular momentum L and the individual spin

angular momenta s couple together to yield a total spin angular momentum S, as

shown in Equation (4.22):

L =
∑
i

li and S =
∑
i

si (4.22)

Just as the orbital angular momentum l can take on 2l+ 1 components having

ml =−l, −l+ 1, … , l − 1, l, the total orbital angular momentum L will also have 2L+ 1

components having ML =−L, −L+ 1, … , L − 1, L. Similarly, the states described by

L= 0, 1, 2, 3, and so on, will have symbols reflecting the shape of their orbital angular

momenta, namely S, P, D, and F. It is common practice to use lower case symbols to

represent “one-electron” orbitals and upper case symbols for polyelectronic states.

For a given value of S, there will be 2S+ 1 spin states having values of MS ranging

from −S to +S in integral steps. The value of 2S+ 1 is known as the spin multiplicity.

States having 2S+ 1= 1 are called singlets, while those having a spin multiplicity of

three are known as triplets.

The procedure for extracting term symbols from the microstates using the RS

coupling scheme is as follows:

• Determine the number of allowed microstates and sketch a microstate table

similar to the one shown earlier for carbon.

• Add a row across the top of the microstate table that calculates theML as the

sum of the individualml’s. Add a similar row across the bottom that calculates

MS as the sum of the individual ms’s. The microstate table for carbon should

now look similar to the one in Figure 4.16:

• Count the number of microstates that have the same values of ML and MS

and organize them into a new table similar to the one shown in Figure 4.17.

Note that this form of the microstate table will always be symmetric about

its center, a fact that can be used to simplify the amount of work involved in

the table’s construction.

• Remove the first term symbol from the chart by choosing the maximum value

of ML. If there is more than one entry having the same value, then maximize

the value of MS as a secondary consideration. In this case, the entry with the

largest value of ML is indicated by an asterisk in Figure 4.18. This entry has

ML = 2 and MS = 0. These are the maximum values for the total orbital and

total spin angular momentum components, and they therefore correspond

with L= 2 and S= 0. The extracted term is a D-term, because L= 2 has the

same orbital angular momentum as a hydrogenic d-orbital (l= 2). The spin

multiplicity of the term is 2S+ 1, in this case, a singlet. The singlet-D term

symbol is written as 1D. It has a degeneracy equal to (2L+ 1)(2S+ 1)= 5.

Thus, in the extraction of the 1D term symbol, we must remove a total of

five microstates. Obviously, the one that is asterisked in the table must be

included in the extraction. The remaining four microstates to be removed are

underlined. They are chosen in such a manner that the center of symmetry

in the table following extraction will be preserved.

• After removal of the five degenerate microstates that comprise the singlet-D

term, the microstate table is reduced as follows (Figure 4.18(b)).
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4.5 ATOMIC TERM SYMBOLS 101

ML =

ml

MS =

+1

0

–1

0 0 0 1 1 1 –1 –1 –1 0 0 0 0 0 0

2 0 –2 1 0 –1 1 0 –1 1 0 –1 1 0 –1

FIGURE 4.16
Microstate table for carbon,
with the ML and MS values
tabulated across the top and
bottom, respectively.

ML

MS 1       0      –1

2

1

0

–1

–2

0       1       0

1       2       1

1       3       1

1       2       1

0       1       0

FIGURE 4.17
Table for a p2 electron
configuration showing the
numbers of microstates having
the corresponding values of ML
and MS.

• The extraction process is repeated until all of the microstates have been

assigned to term symbols. The next extraction removes a term with

L= 1 and S = 1, or a triplet-P term. The degeneracy of the 3P state is

(2L+ 1)(2S+ 1)= 9. Thus, nine microstates must be removed from the table

in a symmetrical manner. The table now reduces to Figure 4.18(c). The final

term has L= 0 and S= 0, or 1S, and is singly degenerate.

Using the RS coupling scheme, it was determined that there are three different

energy levels for the 1s22s22p2 electron configuration of carbon, having the degen-

eracies listed in parentheses: 1D (5), 3P (9), and 1S (1). As required by the formula

given in Equation (4.21), there are a total of 15 Pauli-allowed microstates. However,

these 15 configurations exist in states that have three separate energy levels.

• We can use Hund’s rules to determine the ground-state term. First, we

choose the term with the maximum spin multiplicity and then (if necessary)

the term with the largest total orbital angular momentum L. In the case of

the C atom, the ground-state term is the 3P state. Hund’s rules can only be

1D 3P 1S

ML
MS

ML
MS

ML
MS1       0      –1 1       0      –1 1       0      –1

2

1

0

–1

–2

2

1

0

–1

–2

2

1

0

–1

–2

0       1* 0

1       2        1

1       3        1

1       2        1

0       1        0

0       0        0

1 1 1

1 2 1

1 1 1

0       1        0

0       0       0

0       0       0

0       1* 0

0       0        0

0       0        0

(a) (b) (c)

FIGURE 4.18
(a–c) Extracting the term
symbols from the p2 microstate
table.
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102 4 ATOMIC STRUCTURE

FIGURE 4.19
The shortcut method for
determining the ground-state
term symbol for a p2 electron
configuration.

m1 =  1      0    –1
L = 1 

S = 1
3P ground state

applied to the ground state. We still have no idea whether the 1D or 1S state
will be the lowest energy excited state of carbon. If one is only interested in
the ground-state term, there is an easy shortcut that can be used. Sketch the
electron configuration by filling in the orbital “boxes” such that the electrons
fill in unpaired first beginning with the orbital having the largest value of ml.
Then, it is a simple matter to calculate L and S from the individual angular
momenta in order to determine the ground-state term. The example for C
is shown in Figure 4.19.

Example 4-6. Determine the ground-state term symbol for the d7 electron

configuration.

Solution. Using the given figure, the sum of the ml values is 3 such that L= 3

(F) and S= 3/2 so the spin multiplicity is 4. Thus, the ground-state term symbol

is 4F and has a degeneracy of (2L+ 1)(2S+ 1) or 28.

m1 =
L = 3 

S = 3/2
4F ground state

2 1 0 –1 –2

The term symbols for a variety of possible electron configurations are shown in
Table 4.3. For each entry, the ground-state term symbol is listed first. Note that the
completely filled subshells s2, p6, and d10 are all spherically symmetric, as required by
Unsöld’s theorem and have the 1S term. Half-filled subshells (such as p3 or d5 are also
spherically symmetric. The term symbols for the pairs: p1 and p5, p2 and p4, d2 and
d8, and so on, are identical to one another because the p5 electron configuration,
for instance, can be viewed equivalently as a p1 (hole) configuration.

4.5.2 Extracting Term Symbols Using jj Coupling

For the heavier elements (Z≥ 30), the total orbital L and spin S angular momentum
quantum numbers are no longer valid. Instead, the orbital l and spin s angular momen-
tum of each individual electron couple together first, as shown by Equation (4.23),
to produce a new quantum number j. The directional components of j are given by
the quantum number m and range from j→−j in integral increments, as shown in
Equation (4.24).

ji = li ± si (4.23)

mi = −ji,−ji + 1, … , ji–1, ji (4.24)

The individual j’s then couple together to yield the total angular momentum J,
according to Equation (4.25). The components of J can range from −J to +J, as shown
by Equation (4.26).

J =
∑
i

ji (4.25)

M =
∑
i

mi = −J,−J + 1, … , J − 1, J (4.26)
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4.5 ATOMIC TERM SYMBOLS 103

TABLE 4.3 Term symbols for common electron configurations.

Equivalent electrons

s2, p6, d10 1S
p1, p5 2P
p2, p4 3P, 1D, 1S
p3 4S, 2D, 2P
d1, d9 2D
d2, d8 3F, 3P, 1G, 1D, 1S
d3, d7 4F, 4P, 2H, 2G, 2F, 2D, 2D, 2P
d4, d6 5D, 3H, 3G, 3F, 3F, 3D, 3P, 3P, 1I, 1G, 1G, 1F, 1D, 1D, 1S, 1S
d5 6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G, 2G, 2F, 2F, 2D, 2D, 2D, 2P, 2S

Nonequivalent electrons

s s 1S, 3S
s p 1P, 3P
s d 1D, 3D
p p 3D, 1D, 3P, 1P, 3S, 1S
p d 3F, 1F, 3D, 1D, 3P, 1P
d d 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, 1S

Consider the p2 electron configuration of lead (earlier we had used C for the

p2 configuration, but carbon’s atomic number is less than 30, so here we will use

Pb instead). Because l= 1 for a p-electron and s=± 1/2, j= 3/2 or 1/2. When the

values of jj′ are 3/2, 3/2, the combinations of mm′ quantum numbers possible are

shown in Table 4.4. For j= 3/2, m= 3/2, 1/2, −1/2, or −3/2. Certain combinations,

such as (3/2, 3/2) are Pauli-excluded because j= j′ and m=m′. Likewise, only one

combination of pairs such as (3/2, 1/2), (1/2, 3/2) is allowed because of configurational

exclusion. For this particular set of jj′, there are six possible microstates, as shown

in Table 4.4.

In order to extract the terms from these microstates, one must first maximize

M and then select 2J+ 1 microstates to remove. Thus, the first term to be extracted

will have J= 2 and is fivefold degenerate (M= 2, 1, 0, −1, and −2). This leaves one
remaining microstate in the table, having J= 0 and where M= 0 (singly-degenerate).

Consequently, there are two terms from this table: J= 2 (5) and J= 0 (1), where

the degeneracy of each term is shown in parentheses. For the combination jj′ = 3/2,

1/2, eight combinations of mm′ are allowed, as shown in Table 4.5. In this case, m

can equal m′, because j≠ j′. Extraction of the terms from Table 4.5 yields: J= 2 (5),

J= 1 (3). For jj′ = 1/2, 1/2, there is only one possible microstate (m= 1/2, m′ =−1/2).
Because j= j′, the Pauli exclusion principle states that m≠m′. Hence, the combina-

tions mm′ = 1/2, 1/2 or −1/2, −1/2 are not allowed. The combination −1/2, 1/2 is

TABLE 4.4 Microstates having jj′ =3/2, 3/2.

m1 m2 M

3/2 1/2 2
3/2 −1/2 1
3/2 −3/2 0
1/2 −1/2 0
1/2 −3/2 −1
−1/2 −3/2 −2
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104 4 ATOMIC STRUCTURE

TABLE 4.5 Microstates having jj′ =3/2, 1/2.

m1 m2 M

3/2 1/2 2
3/2 −1/2 1
1/2 1/2 1
1/2 −1/2 0
−1/2 1/2 0
−1/2 −1/2 −1
−3/2 1/2 −1
−3/2 −1/2 −2

configurationally excluded. Extraction of the final term yields J= 0 (1). In summary,
applying the jj coupling scheme to the p2 configuration of Pb yields a total of 15 pos-

sible microstates (6 from jj′ = 3/2, 3/2; 8 from jj′ = 3/2, 1/2; and 1 from jj′ = 1/2, 1/2)
and five terms (J= 2, J= 0, J= 2, J= 1, and J = 0).

4.5.3 Correlation Between RS (LS) Coupling and jj Coupling

For elements having atomic numbers that are intermediate between the extremes
of RS coupling and jj coupling, there is a one-to-one correspondence between the

terms. For every RS term symbol, one can introduce a spin-orbit perturbation
that further splits these terms into different energies by introducing the quantum

number J. For intermediate cases, J= |L+ S|→ |L − S|. Consider the p2 electron
configuration as an example. In this case, the RS term symbols are 3P (9), 1D (5),

and 1S (1). For the 3P term, where L= 1 and S= 1, J can take values of 2, 1, or 0.
Thus, the 3P term will split into three different energy levels, each having a degen-

eracy of 2J+ 1, as follows: 3P2 (5),
3P1 (3), and

3P0 (1). The revised RS term symbol
lists the quantum number J as a subscript following the term. As before, the num-

ber in parentheses represents the degeneracy of the modified term. Note that the
total number of microstates both before and after spin-orbit coupling is the same
(in this case, 9). Likewise, the 1D (5) term will become 1D2 (5) as a result of the

spin-orbit perturbation and the 1S (1) term will become 1S0 (1). Figure 4.20 shows
the one-to-one correspondence between terms in the RS coupling scheme and those

in the jj coupling scheme for the p2 electron configuration.
In progressing from the RS term symbol to the spin-orbit modified terms, a

barycenter of energy must be maintained. In other words, the total energy of the
microstates before and after the perturbation must be equivalent. The energies of

FIGURE 4.20
There is a one-to-one
correspondence between terms
in the RS coupling scheme and
terms in the jj coupling scheme. RS coupling Intermediate jj coupling

1S (1)

1D (5)

3P (9)

1S0 (1)

1D2 (5)

3P2 (5)p2 (15) p2 (15)

3P1 (3)

3P0 (1)

J = 0 (1)

J = 2 (5)

J = 2 (5)

J = 1 (3)

J = 0 (1) 1/2, 1/2 (1)

3/2, 1/2 (8)

3/2, 3/2 (6)
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4.6 SHIELDING AND EFFECTIVE NUCLEAR CHARGE 105

the spin-orbit perturbed states (relative to each unperturbed RS term) are given by

Equation (4.27), where 𝜆 is the spin-orbit coupling constant:

ES.O. = (𝜆∕2)[J(J + 1)–L(L + 1)–S(S + 1)] (4.27)

For the 3P term, the energy of the perturbed 3P2,
3P1, and

3P0 states are+ 𝜆,
−𝜆, and −2𝜆, respectively, according to the given equation. Although the magnitude

of 𝜆 is a function of the element, it always increases with increasing atomic num-

ber. Hence, the degree of spin-orbit coupling will increase with Z. Because the 3P2
state is fivefold degenerate, it is destabilized with respect to the unperturbed term

by 5(+1𝜆), or +5𝜆. The triply degenerate 3P1 state and the singly degenerate 3P0
state are stabilized by 3(−1𝜆) and 1(−2𝜆), respectively. Thus, the total energy of the
3P2,

3P1, and
3P0 terms are +5(+1𝜆)+ 3(−1𝜆)+ 1(−2𝜆)= 0, relative to the unper-

turbed 3P state. Note that the total energy is conserved following the spin-orbit

perturbation. The very important concept of term symbols will be revisited in a

later section of this text when the spectroscopy of coordination compounds is

discussed.

4.6 SHIELDING AND EFFECTIVE NUCLEAR CHARGE

One of the largest differences between hydrogen and polyelectronic atoms is that the

nuclear charge that an outer electron feels in a polyelectronic atom will be reduced

by the electron–electron repulsions of all the inner electrons. Thus, the nuclear

charge Z should be replaced by the effective nuclear charge Z*. As mentioned pre-

viously, for a given value of n, the ability of an electron to penetrate the nucleus

decreases in the order s> p> d> f. Therefore, the ns and np electrons are particu-

larly good at shielding (or screening) the nd or nf electrons from feeling the full effect

of the nuclear charge. The effective nuclear charge is equal to the difference between

the nuclear charge Z and a shielding parameter 𝜎, as shown in Equation (4.28). The

shielding parameter depends on the electron configuration of the atom and the

electron of interest.

Z∗ = Z − 𝜎 (4.28)

In 1930, Slater developed a set of empirical rules for calculating the magnitude

of the shielding parameter:

• The electron configuration is written in groups with increasing values of n

according to the paradigm given here:

(1s)(2s, 2p)(3s, 3p)(3d)(4s, 4p)(4d)(4f )(5s, 5p)(5d)(5f ) …

• The electron of interest and any electrons that lie to the right of that electron

in the paradigm will contribute zero to the shielding parameter.

• For s and p electrons, any other electron in the same group contributes 0.35

each (exception: if the electron of interest lies in the 1s orbital, any other

1s electron will contribute only 0.30). Electrons in the n−1 group contribute

0.85 each and all other groups lying to the left contribute 1.00 each to the

shielding parameter.

• For d or f electrons, any electron in the same group contributes 0.35 each

and all other electrons to the left contribute 1.00 each. This is a result of the

fact that the s and p orbitals are better screeners than are d and f orbitals.
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106 4 ATOMIC STRUCTURE

Example 4-7.Calculate the effective nuclear charge that the outermost electron

in K would feel if: (a) it was placed into the 4s orbital, and (b) it was instead placed

into a 3d orbital.

Solution. The electron configuration of the first 18 electrons in K using the

paradigm is (1s)2(2s, 2p)8(3s, 3p)8.
(a) If the electron of interest is placed into a 4s orbital, the shielding param-

eter and effective nuclear charge calculated using Slater’s rules are

𝜎 = 0(0.35) + 8(0.85) + 10(1.00) = 16.8

Z∗ = Z − 𝜎 = 19.0–16.8 = 2.2

(b) If the electron of interest is placed into a 3d orbital, the shielding param-

eter and effective nuclear charge calculated using Slater’s rules are

𝜎 = 0(0.35) + 18(1.00) = 18.0

Z∗ = Z − 𝜎 = 19.0–18.0 = 1.0

Because of the larger value of Z*, Slater’s rules predict correctly that the

19th electron of K will fill the 4s orbital instead of the 3d orbital.

To a first approximation, the ionization energy (I.E.) of an atom is equal to the

negative of the energy of the electron (Eel) that is being removed. This is known

as Koopman’s theorem. Because electron energies are always negative, the ionization

energy will always be positive. The I.E. can be calculated from Equation (4.29), where

Z* is the effective nuclear charge calculated using Slater’s rules and n is the principal

quantum number for the outermost electron.

I.E. = −Eel = −2.179 × 10−18 J(6.022 × 1023mol−1)Z
∗

n2
(4.29)

Example 4-8. Calculate the effective nuclear charge for: (a) a 3d electron in

Ni and (b) for a 4s electron in Ni. Which electron will have the smaller first

ionization energy?

Solution. The electron configuration for Ni using the Slater paradigm is

(1s)2(2s, 2p)8(3s, 3p)8(3d)8(4s, 4p)2.
(a) If the electron of interest is a 3d electron, the shielding parameter and

effective nuclear charge calculated using Slater’s rules are

𝜎 = 7(0.35) + 18(1.00) = 20.45

Z∗ = Z − 𝜎 = 28.00–20.45 = 7.55

(b) If the electron of interest is a 4s electron, the shielding parameter and

effective nuclear charge calculated using Slater’s rules are

𝜎 = 1(0.35) + 16(0.85) + 10(1.00) = 23.95

Z∗ = Z − 𝜎 = 28.00–23.95 = 4.05
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EXERCISES 107

Slater’s rules predict that the 3d electron will experience a stronger effec-

tive nuclear charge than will the 4s electron. Therefore, the 4s electron will

have the smaller first ionization energy. Thus, the electron configuration of Ni+

is [Ar]4s13d8, not [Ar]4s23d7. Likewise, the electron configuration of Ni2+ is

[Ar]4s03d8. It is a general property of the transition metals that the hydrogenic

ns orbitals typically fill before the (n−1)d orbitals fill; and the ns orbitals also

ionize (or empty) before the (n−1)d orbitals do.

Example 4-9.Calculate the theoretical ionization energy for a 2p electron in the

N atom using Equation (4.29). Then, calculate the ionization energy if the effects

of shielding had not been considered (using just Z instead of Z*). Compare both

answers to the experimental ionization energy of 1.4 MJ/mol.

Solution. The electron configuration of N using the Slater paradigm is (1s)2

(2s, 2p)5. The electron of interest is a 2p electron. The shielding parameter and

effective nuclear charge can be calculated using Slater’s rules:

𝜎 = 4(0.35) + 2(0.85) = 3.1

Z∗ = Z − 𝜎 = 7.0–3.1 = 3.9

The first ionization energy using Equation (4.29) is

I.E. = −Eel = −2.179 × 10−18 J(6.022 × 1023mol−1)3.9
22

(
1MJ

106 J

)
= 1.3 MJ∕mol

Ignoring shielding, one obtains:

I.E. = −Eel = −2.179 × 10−18 J(6.022 × 1023mol−1) 7

22

(
1MJ

106 J

)
= 2.3 MJ∕mol

Clearly, the answer that includes shielding is closer to the experimental value.

The periodic properties of the elements, including the first ionization energy, are

discussed in the next chapter. Almost all of these properties will ultimately depend

on three simple factors: (i) the electron configuration of the atom, (ii) the principal

quantum number of the outermost electron, and (iii) the effective nuclear charge.

Therefore, a quantitative understanding of Slater’s rules is an important tool in the

prediction of the chemical reactivity of the elements.

EXERCISES

4.1. How far from the hydrogen nucleus will the radial node for an electron in the 3p orbital

reside?

4.2. How many radial nodes and how many angular nodal planes will a 4f orbital possess?

4.3. Write the mathematical form of the angular part of the wave function for the dxy and

dx
2
−y

2 orbitals by taking the positive and negative linear combinations of Y(2,2) with

Y(2,−2), respectively.
4.4. Write the complete electron configurations (no shorthand notation) for each of the

following: (a) Fe, (b) Fe3+, (c) O−, (d) Pb, (e) Mn2+, (f) Sc, (g) Zn2+, (h) Tl, (i) Pu, and

(j) Re+.
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108 4 ATOMIC STRUCTURE

4.5. Which atoms or ions in Problem 4.4 are paramagnetic and which are diamagnetic?

4.6. Determine the term symbols for the N atom. Show all work. (a) Determine the

number of possible microstates. (b) Write out all the possible combinations of the

electrons in a microstates table. (c) Extract the term symbols and determine the degen-

eracy of each term. (d) Determine the ground-state term symbol using Hund’s rule of

maximum multiplicity.

4.7. Determine the spin–orbit splitting for each of the RS term symbols for the P atom and

use Equation (4.27) to calculate their energies relative to the barycenter of each term.

4.8. Determine the ground-state term symbol for each of the following: (a) O, (b) Ni, (c)

Fe2+, (d) Co, and (e) Pu.

4.9. Using Slater’s rules, calculate Z* for: (a) 2p electron in F, (b) 4s electron in Cu, and (c)

3d electron in Cu.

4.10. When Cu is oxidized by one electron, will the electron be removed from the 4s or

the 3d orbital first? Explain your answer.

4.11. The stabilization of a half-filled d-subshell is greater than that for a half-filled p-subshell.

Explain why.

4.12. Calculate the first ionization energy for P in units of megajoule per mole.
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